Added support for ECDH in enveloped data with ECDSA certificates.

- fixed parsing of choice(was compatible with Apple mail.app which tagged kari explicitly)
- minor fixes
This commit is contained in:
InfiniteLoopSpace 2018-12-10 17:18:29 +01:00
parent 58514b0041
commit 5f34d82562
15 changed files with 702 additions and 168 deletions

View File

@ -760,7 +760,7 @@ func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParam
if err != nil { if err != nil {
return return
} }
if params.explicit { if params.explicit && !params.choice {
expectedClass := ClassContextSpecific expectedClass := ClassContextSpecific
if params.application { if params.application {
expectedClass = ClassApplication expectedClass = ClassApplication
@ -968,19 +968,13 @@ func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParam
} }
innerOffset := 0 innerOffset := 0
if params.choice {
if !params.explicit {
innerBytes = bytes[initOffset:]
}
}
for i := 0; i < structType.NumField(); i++ { for i := 0; i < structType.NumField(); i++ {
field := structType.Field(i) field := structType.Field(i)
if params.choice {
tag := parseFieldParameters(field.Tag.Get("asn1")).tag
if tag != nil && t.tag == *tag || t.class != ClassContextSpecific && tag == nil {
if tag == nil || params.set {
innerBytes = bytes[initOffset:offset]
}
innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, fieldParameters{})
return
}
continue
}
if i == 0 && field.Type == rawContentsType { if i == 0 && field.Type == rawContentsType {
continue continue
} }

View File

@ -482,9 +482,6 @@ func makeBody(value reflect.Value, params fieldParameters) (e encoder, err error
m := make([]encoder, n1) m := make([]encoder, n1)
for i := 0; i < n1; i++ { for i := 0; i < n1; i++ {
fp := parseFieldParameters(t.Field(i + startingField).Tag.Get("asn1")) fp := parseFieldParameters(t.Field(i + startingField).Tag.Get("asn1"))
if params.explicit && params.choice {
fp.explicit = true
}
m[i], err = makeField(v.Field(i+startingField), fp) m[i], err = makeField(v.Field(i+startingField), fp)
if err != nil { if err != nil {
return nil, err return nil, err
@ -501,9 +498,6 @@ func makeBody(value reflect.Value, params fieldParameters) (e encoder, err error
var fp fieldParameters var fp fieldParameters
fp.choice = params.choice fp.choice = params.choice
if params.choice && params.set {
fp.explicit = true
}
switch l := v.Len(); l { switch l := v.Len(); l {
case 0: case 0:

View File

@ -65,7 +65,11 @@ func (cms *CMS) Encrypt(data []byte, recipients []*x509.Certificate) (der []byte
var reciInfos []protocol.RecipientInfo var reciInfos []protocol.RecipientInfo
for _, recipient := range recipients { for _, recipient := range recipients {
rInfo := protocol.NewRecipientInfo(recipient, key) var rInfo protocol.RecipientInfo
rInfo, err = protocol.NewRecipientInfo(recipient, key)
if err != nil {
return
}
reciInfos = append(reciInfos, rInfo) reciInfos = append(reciInfos, rInfo)
} }
@ -90,7 +94,11 @@ func (cms *CMS) AuthEncrypt(data []byte, recipients []*x509.Certificate) (der []
var reciInfos []protocol.RecipientInfo var reciInfos []protocol.RecipientInfo
for _, recipient := range recipients { for _, recipient := range recipients {
rInfo := protocol.NewRecipientInfo(recipient, key) var rInfo protocol.RecipientInfo
rInfo, err = protocol.NewRecipientInfo(recipient, key)
if err != nil {
return
}
reciInfos = append(reciInfos, rInfo) reciInfos = append(reciInfos, rInfo)
} }

View File

@ -3,10 +3,13 @@ package cms
import ( import (
"bytes" "bytes"
"crypto" "crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/tls" "crypto/tls"
"crypto/x509" "crypto/x509"
"crypto/x509/pkix" "crypto/x509/pkix"
"log" "strings"
"testing" "testing"
openssl "github.com/InfiniteLoopSpace/go_S-MIME/openssl" openssl "github.com/InfiniteLoopSpace/go_S-MIME/openssl"
@ -26,62 +29,103 @@ var (
CommonName: "leaf.example.com", CommonName: "leaf.example.com",
})) }))
ecKey, _ = ecdsa.GenerateKey(elliptic.P384(), rand.Reader)
leafECC = intermediate.Issue(pki.Subject(pkix.Name{
CommonName: "leaf.example.com",
}), pki.PrivateKey(ecKey))
keyPair = tls.Certificate{ keyPair = tls.Certificate{
Certificate: [][]byte{leaf.Certificate.Raw, intermediate.Certificate.Raw, root.Certificate.Raw}, Certificate: [][]byte{leaf.Certificate.Raw, intermediate.Certificate.Raw, root.Certificate.Raw},
PrivateKey: leaf.PrivateKey.(crypto.PrivateKey), PrivateKey: leaf.PrivateKey.(crypto.PrivateKey),
Leaf: leaf.Certificate,
} }
keyPairECC = tls.Certificate{
Certificate: [][]byte{leafECC.Certificate.Raw, intermediate.Certificate.Raw, root.Certificate.Raw},
PrivateKey: leafECC.PrivateKey.(crypto.PrivateKey),
Leaf: leafECC.Certificate,
}
keyPairs = []tls.Certificate{}
keyPairsOpenssl = []tls.Certificate{}
) )
func TestMain(m *testing.M) {
keyPairs = []tls.Certificate{keyPair, keyPairECC}
version, err := openssl.Openssl(nil, "version")
if err == nil {
keyPairsOpenssl = append(keyPairsOpenssl, keyPair)
}
if strings.HasPrefix(string(version), "OpenSSL 1.1") {
openssl.SMIME = "cms"
keyPairsOpenssl = append(keyPairsOpenssl, keyPairECC)
}
m.Run()
}
func TestAuthEnrypt(t *testing.T) { func TestAuthEnrypt(t *testing.T) {
cms, err := New(keyPair) for _, keypair := range keyPairs {
cms, err := New(keypair)
if err != nil { if err != nil {
t.Error(err) t.Error(err)
} }
plaintext := []byte("Hallo Welt!") plaintext := []byte("Hallo Welt!")
ciphertext, err := cms.AuthEncrypt(plaintext, []*x509.Certificate{leaf.Certificate}) ciphertext, err := cms.AuthEncrypt(plaintext, []*x509.Certificate{keypair.Leaf})
if err != nil { if err != nil {
t.Error(err) t.Error(err)
} }
plain, err := cms.AuthDecrypt(ciphertext) plain, err := cms.AuthDecrypt(ciphertext)
if err != nil { if err != nil {
log.Fatal(err) t.Error(err)
} }
if !bytes.Equal(plaintext, plain) { if !bytes.Equal(plaintext, plain) {
t.Fatal("Encryption and decryption are not inverse") t.Fatal("Encryption and decryption are not inverse")
} }
} }
}
func TestEnryptDecrypt(t *testing.T) { func TestEnryptDecrypt(t *testing.T) {
cms, err := New(keyPair) for _, keypair := range keyPairs {
cms, err := New(keypair)
if err != nil { if err != nil {
t.Error(err) t.Error(err)
} }
plaintext := []byte("Hallo Welt!") plaintext := []byte("Hallo Welt!")
ciphertext, err := cms.Encrypt(plaintext, []*x509.Certificate{leaf.Certificate}) ciphertext, err := cms.Encrypt(plaintext, []*x509.Certificate{keypair.Leaf})
if err != nil { if err != nil {
t.Error(err) t.Error(err)
} }
plain, err := cms.Decrypt(ciphertext) plain, err := cms.Decrypt(ciphertext)
if err != nil { if err != nil {
log.Fatal(err) t.Error(err)
} }
if !bytes.Equal(plaintext, plain) { if !bytes.Equal(plaintext, plain) {
t.Fatal("Encryption and decryption are not inverse") t.Fatal("Encryption and decryption are not inverse")
} }
} }
}
func TestSignVerify(t *testing.T) { func TestSignVerify(t *testing.T) {
cms, err := New(keyPair)
for _, keypair := range keyPairs {
cms, err := New(keypair)
if err != nil { if err != nil {
t.Error(err) t.Error(err)
} }
@ -100,16 +144,19 @@ func TestSignVerify(t *testing.T) {
t.Error(err) t.Error(err)
} }
} }
}
func TestEncryptOpenSSL(t *testing.T) { func TestEncryptOpenSSL(t *testing.T) {
for _, keypair := range keyPairsOpenssl {
message := []byte("Hallo Welt!") message := []byte("Hallo Welt!")
der, err := openssl.Encrypt(message, leaf.Certificate, "-outform", "DER") der, err := openssl.Encrypt(message, keypair.Leaf, "-outform", "DER")
if err != nil { if err != nil {
t.Error(err) t.Error(err)
} }
cms, err := New(keyPair) cms, err := New(keypair)
plain, err := cms.Decrypt(der) plain, err := cms.Decrypt(der)
if err != nil { if err != nil {
t.Error(err) t.Error(err)
@ -119,17 +166,20 @@ func TestEncryptOpenSSL(t *testing.T) {
t.Fatal("Encryption and decryption are not inverse") t.Fatal("Encryption and decryption are not inverse")
} }
} }
}
func TestDecryptOpenSSL(t *testing.T) { func TestDecryptOpenSSL(t *testing.T) {
for _, keypair := range keyPairsOpenssl {
message := []byte("Hallo Welt!") message := []byte("Hallo Welt!")
cms, _ := New() cms, _ := New()
ciphertext, err := cms.Encrypt(message, []*x509.Certificate{leaf.Certificate}) ciphertext, err := cms.Encrypt(message, []*x509.Certificate{keypair.Leaf})
if err != nil { if err != nil {
t.Error(err) t.Error(err)
} }
plain, err := openssl.Decrypt(ciphertext, leaf.PrivateKey, "-inform", "DER") plain, err := openssl.Decrypt(ciphertext, keypair.PrivateKey, "-inform", "DER")
if err != nil { if err != nil {
t.Error(err) t.Error(err)
} }
@ -138,11 +188,14 @@ func TestDecryptOpenSSL(t *testing.T) {
t.Fatal("Encryption and decryption are not inverse") t.Fatal("Encryption and decryption are not inverse")
} }
} }
}
func TestSignOpenSSL(t *testing.T) { func TestSignOpenSSL(t *testing.T) {
for _, keypair := range keyPairsOpenssl {
message := []byte("Hallo Welt") message := []byte("Hallo Welt")
sig, err := openssl.SignDetached(message, leaf.Certificate, leaf.PrivateKey, []*x509.Certificate{intermediate.Certificate}, "-outform", "DER") sig, err := openssl.SignDetached(message, keypair.Leaf, keypair.PrivateKey, []*x509.Certificate{intermediate.Certificate}, "-outform", "DER")
if err != nil { if err != nil {
t.Error(err) t.Error(err)
} }
@ -158,9 +211,12 @@ func TestSignOpenSSL(t *testing.T) {
t.Error(err) t.Error(err)
} }
} }
}
func TestVerifyOpenSSL(t *testing.T) { func TestVerifyOpenSSL(t *testing.T) {
cms, err := New(keyPair)
for _, keypair := range keyPairsOpenssl {
cms, err := New(keypair)
if err != nil { if err != nil {
t.Error(err) t.Error(err)
} }
@ -185,3 +241,4 @@ func TestVerifyOpenSSL(t *testing.T) {
t.Fatal("Signed message and message do not agree!") t.Fatal("Signed message and message do not agree!")
} }
} }
}

218
cms/protocol/ecdh.go Normal file
View File

@ -0,0 +1,218 @@
package protocol
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/tls"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/binary"
"errors"
"math/big"
"github.com/InfiniteLoopSpace/go_S-MIME/oid"
)
var errUnsupported = errors.New("Unsupported hash function")
// ECDHsharedSecret computes shared secret with ephemeral static ECDH
func ECDHsharedSecret(curve elliptic.Curve, priv []byte, pubX, pubY *big.Int) []byte {
x, _ := curve.ScalarMult(pubX, pubY, priv)
return x.Bytes()
}
// ANSIx963KDF implents ANSI X9.63 key derivation function
func ANSIx963KDF(sharedSecret, sharedInfo []byte, keyLen int, hash crypto.Hash) (key []byte, err error) {
ctr := make([]byte, 4)
ctr[3] = 0x01
if hash == 0 || !hash.Available() {
return nil, errUnsupported
}
h := hash.New()
for i := 0; i < keyLen/hash.Size()+1; i++ {
h.Reset()
h.Write(sharedSecret)
h.Write(ctr)
h.Write(sharedInfo)
key = append(key, h.Sum(nil)...)
// Increment counter
for i := len(ctr) - 1; i >= 0; i-- {
ctr[i]++
if ctr[i] != 0 {
break
}
}
}
return key[:keyLen], nil
}
func encryptKeyECDH(key []byte, recipient *x509.Certificate) (kari KeyAgreeRecipientInfo, err error) {
keyWrapAlgorithm := oid.KeyWrap{KeyWrapAlgorithm: oid.AES128Wrap}
keyEncryptionAlgorithm := oid.DHSinglePassstdDHsha256kdfscheme
hash := oid.KDFHashAlgorithm[keyEncryptionAlgorithm.String()]
kari.UKM = make([]byte, 8)
rand.Read(kari.UKM)
kari.Version = 3
kari.Originator.OriginatorKey.Algorithm = pkix.AlgorithmIdentifier{Algorithm: oid.ECPublicKey}
// check recipient key
if recipient.PublicKeyAlgorithm != x509.ECDSA {
err = errors.New("Recipient certficiate has wrong public key algorithm, expected ECDSA")
return
}
pubKey, ok := recipient.PublicKey.(*ecdsa.PublicKey)
if !ok {
err = errors.New("Can not parse public key of recipient")
return
}
// genrate ephemeral public key and key encryption key
priv, x, y, err := elliptic.GenerateKey(pubKey.Curve, rand.Reader)
if err != nil {
return
}
ephPubKey := elliptic.Marshal(pubKey.Curve, x, y)
kari.Originator.OriginatorKey.PublicKey = asn1.BitString{Bytes: ephPubKey, BitLength: len(ephPubKey) * 8}
sharedSecret := ECDHsharedSecret(pubKey.Curve, priv, pubKey.X, pubKey.Y)
keyLenBigEnd := make([]byte, 4)
binary.BigEndian.PutUint32(keyLenBigEnd, uint32(keyWrapAlgorithm.KeyLen())*8)
sharedInfo := ECCCMSSharedInfo{KeyInfo: keyWrapAlgorithm.AlgorithmIdentifier(),
SuppPubInfo: keyLenBigEnd,
EntityUInfo: kari.UKM}
sharedInfoDER, err := asn1.Marshal(sharedInfo)
kek, err := ANSIx963KDF(sharedSecret, sharedInfoDER, keyWrapAlgorithm.KeyLen(), hash)
if err != nil {
return
}
// encrypt key
keyWrapAlgorithm.KEK = kek
encKey, err := keyWrapAlgorithm.Wrap(key)
if err != nil {
return
}
keyWrapAlgorithmIdentifier, err := RawValue(keyWrapAlgorithm.AlgorithmIdentifier())
if err != nil {
return
}
kari.KeyEncryptionAlgorithm = pkix.AlgorithmIdentifier{Algorithm: keyEncryptionAlgorithm,
Parameters: keyWrapAlgorithmIdentifier}
ias, err := NewIssuerAndSerialNumber(recipient)
karID := KeyAgreeRecipientIdentifier{IAS: ias}
kari.RecipientEncryptedKeys = append(kari.RecipientEncryptedKeys, RecipientEncryptedKey{RID: karID, EncryptedKey: encKey})
return
}
// ECCCMSSharedInfo ECC-CMS-SharedInfo ::= SEQUENCE {
// keyInfo AlgorithmIdentifier,
// entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
// suppPubInfo [2] EXPLICIT OCTET STRING }
type ECCCMSSharedInfo struct {
KeyInfo pkix.AlgorithmIdentifier
EntityUInfo []byte `asn1:"optional,explicit,tag:0"`
SuppPubInfo []byte `asn1:"explicit,tag:2"`
}
func (kari *KeyAgreeRecipientInfo) decryptKey(keyPair tls.Certificate) (key []byte, err error) {
// check for ec key
if kari.Version != 3 {
err = errors.New("Version not supported")
return
}
if !kari.Originator.OriginatorKey.Algorithm.Algorithm.Equal(oid.ECPublicKey) {
err = errors.New("Orginator key algorithm not supported")
return
}
pubKey, ok := keyPair.Leaf.PublicKey.(*ecdsa.PublicKey)
if !ok {
err = errors.New("Can not parse public key of recipient")
return
}
x, y := elliptic.Unmarshal(pubKey.Curve, kari.Originator.OriginatorKey.PublicKey.Bytes)
// genrate ephemeral public key and key encryption key
priv := keyPair.PrivateKey.(*ecdsa.PrivateKey)
privateKeyBytes := keyPair.PrivateKey.(*ecdsa.PrivateKey).D.Bytes()
paddedPrivateKey := make([]byte, (priv.Curve.Params().N.BitLen()+7)/8)
copy(paddedPrivateKey[len(paddedPrivateKey)-len(privateKeyBytes):], privateKeyBytes)
sharedSecret := ECDHsharedSecret(pubKey.Curve, paddedPrivateKey, x, y)
hash, ok := oid.KDFHashAlgorithm[kari.KeyEncryptionAlgorithm.Algorithm.String()]
if !ok {
err = errors.New("Unsupported key derivation hash algorithm")
return
}
var keyWrapAlgorithmIdentifier pkix.AlgorithmIdentifier
asn1.Unmarshal(kari.KeyEncryptionAlgorithm.Parameters.FullBytes, &keyWrapAlgorithmIdentifier)
keyWrapAlgorithm := oid.KeyWrap{KeyWrapAlgorithm: keyWrapAlgorithmIdentifier.Algorithm}
//
keyLenBigEnd := make([]byte, 4)
binary.BigEndian.PutUint32(keyLenBigEnd, uint32(keyWrapAlgorithm.KeyLen())*8)
sharedInfo := ECCCMSSharedInfo{KeyInfo: keyWrapAlgorithmIdentifier,
SuppPubInfo: keyLenBigEnd,
EntityUInfo: kari.UKM}
sharedInfoDER, err := asn1.Marshal(sharedInfo)
kek, err := ANSIx963KDF(sharedSecret, sharedInfoDER, keyWrapAlgorithm.KeyLen(), hash)
if err != nil {
return
}
keyWrapAlgorithm.KEK = kek
// encrypt key
ias, err := NewIssuerAndSerialNumber(keyPair.Leaf)
if err != nil {
return
}
for i := range kari.RecipientEncryptedKeys {
if kari.RecipientEncryptedKeys[i].RID.IAS.Equal(ias) {
key, err = keyWrapAlgorithm.UnWrap(kari.RecipientEncryptedKeys[i].EncryptedKey)
return
}
}
err = ErrNoKeyFound
return
}

View File

@ -58,7 +58,7 @@ func (ed *EnvelopedData) decryptKey(keyPair tls.Certificate) (key []byte, err er
for i := range ed.RecipientInfos { for i := range ed.RecipientInfos {
key, err = ed.RecipientInfos[i].decryptKey(keyPair) key, err = ed.RecipientInfos[i].decryptKey(keyPair)
if key != nil { if key != nil || err != ErrNoKeyFound {
return return
} }
} }

View File

@ -33,8 +33,14 @@ type RecipientInfo struct {
func (recInfo *RecipientInfo) decryptKey(keyPair tls.Certificate) (key []byte, err error) { func (recInfo *RecipientInfo) decryptKey(keyPair tls.Certificate) (key []byte, err error) {
return recInfo.KTRI.decryptKey(keyPair) key, err = recInfo.KTRI.decryptKey(keyPair)
if key != nil {
return
}
key, err = recInfo.KARI.decryptKey(keyPair)
return
} }
//KeyTransRecipientInfo ::= SEQUENCE { //KeyTransRecipientInfo ::= SEQUENCE {
@ -102,7 +108,7 @@ type RecipientIdentifier struct {
} }
// NewRecipientInfo creates RecipientInfo for giben recipient and key. // NewRecipientInfo creates RecipientInfo for giben recipient and key.
func NewRecipientInfo(recipient *x509.Certificate, key []byte) RecipientInfo { func NewRecipientInfo(recipient *x509.Certificate, key []byte) (info RecipientInfo, err error) {
version := 0 //issuerAndSerialNumber version := 0 //issuerAndSerialNumber
rid := RecipientIdentifier{} rid := RecipientIdentifier{}
@ -118,24 +124,35 @@ func NewRecipientInfo(recipient *x509.Certificate, key []byte) RecipientInfo {
rid.SKI = recipient.SubjectKeyId rid.SKI = recipient.SubjectKeyId
} }
kea := oid.PublicKeyAlgorithmToEncrytionAlgorithm[recipient.PublicKeyAlgorithm] switch recipient.PublicKeyAlgorithm {
if _, ok := oid.PublicKeyAlgorithmToEncrytionAlgorithm[recipient.PublicKeyAlgorithm]; !ok { case x509.RSA:
log.Fatal("NewRecipientInfo: PublicKeyAlgorithm not supported") var encrypted []byte
encrypted, err = encryptKeyRSA(key, recipient)
if err != nil {
return
} }
info = RecipientInfo{
encrypted, _ := encryptKey(key, recipient)
info := RecipientInfo{
KTRI: KeyTransRecipientInfo{ KTRI: KeyTransRecipientInfo{
Version: version, Version: version,
Rid: rid, Rid: rid,
KeyEncryptionAlgorithm: kea, KeyEncryptionAlgorithm: pkix.AlgorithmIdentifier{Algorithm: oid.EncryptionAlgorithmRSA},
EncryptedKey: encrypted, EncryptedKey: encrypted,
}} }}
return info case x509.ECDSA:
var kari KeyAgreeRecipientInfo
kari, err = encryptKeyECDH(key, recipient)
if err != nil {
return
}
info = RecipientInfo{KARI: kari}
default:
err = errors.New("Public key algorithm not supported")
} }
func encryptKey(key []byte, recipient *x509.Certificate) ([]byte, error) { return
}
func encryptKeyRSA(key []byte, recipient *x509.Certificate) ([]byte, error) {
if pub := recipient.PublicKey.(*rsa.PublicKey); pub != nil { if pub := recipient.PublicKey.(*rsa.PublicKey); pub != nil {
return rsa.EncryptPKCS1v15(rand.Reader, pub, key) return rsa.EncryptPKCS1v15(rand.Reader, pub, key)
} }

View File

@ -379,8 +379,12 @@ func (sd *SignedData) Verify(Opts x509.VerifyOptions, detached []byte) (chains [
return return
} }
} }
var sigAlg x509.SignatureAlgorithm
err = cert.CheckSignature(signer.X509SignatureAlgorithm(), signedMessage, signer.Signature) sigAlg, err = signer.X509SignatureAlgorithm()
if err != nil {
return
}
err = cert.CheckSignature(sigAlg, signedMessage, signer.Signature)
if err != nil { if err != nil {
return return
} }

View File

@ -6,6 +6,7 @@ import (
"crypto/x509" "crypto/x509"
"crypto/x509/pkix" "crypto/x509/pkix"
"encoding/asn1" "encoding/asn1"
"fmt"
"time" "time"
asn "github.com/InfiniteLoopSpace/go_S-MIME/asn1" asn "github.com/InfiniteLoopSpace/go_S-MIME/asn1"
@ -83,13 +84,18 @@ func (si SignerInfo) Hash() (crypto.Hash, error) {
// X509SignatureAlgorithm gets the x509.SignatureAlgorithm that should be used // X509SignatureAlgorithm gets the x509.SignatureAlgorithm that should be used
// for verifying this SignerInfo's signature. // for verifying this SignerInfo's signature.
func (si SignerInfo) X509SignatureAlgorithm() x509.SignatureAlgorithm { func (si SignerInfo) X509SignatureAlgorithm() (sigAlg x509.SignatureAlgorithm, err error) {
var ( var (
sigOID = si.SignatureAlgorithm.Algorithm.String() sigOID = si.SignatureAlgorithm.Algorithm.String()
digestOID = si.DigestAlgorithm.Algorithm.String() digestOID = si.DigestAlgorithm.Algorithm.String()
) )
sigAlg, ok := oid.SignatureAlgorithms[sigOID][digestOID]
return oid.SignatureAlgorithms[sigOID][digestOID] if !ok {
err = fmt.Errorf("Signature algorithm with OID %s in combination with digest with OID %s not supported", sigOID, digestOID)
}
return
} }
// GetContentTypeAttribute gets the signed ContentType attribute from the // GetContentTypeAttribute gets the signed ContentType attribute from the

163
oid/key_wrap.go Normal file
View File

@ -0,0 +1,163 @@
package oid
import (
"crypto/aes"
"crypto/cipher"
"crypto/subtle"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/binary"
"errors"
)
// KeyWrap wraps and unwraps key with the key encrytion key (KEK) for a given (KeyWrapAlgorithm)
type KeyWrap struct {
KEK []byte
KeyWrapAlgorithm asn1.ObjectIdentifier
}
// Wrap wraps the content encryption key (cek)
func (kw *KeyWrap) Wrap(cek []byte) (ciphertext []byte, err error) {
var block cipher.Block
switch kw.KeyWrapAlgorithm.String() {
case AES128Wrap.String(), AES192Wrap.String(), AES256Wrap.String():
block, err = aes.NewCipher(kw.KEK)
if err != nil {
return
}
}
return Wrap(block, cek)
}
// UnWrap unwraps the encrypted key (encKey)
func (kw *KeyWrap) UnWrap(encKey []byte) (cek []byte, err error) {
var block cipher.Block
switch kw.KeyWrapAlgorithm.String() {
case AES128Wrap.String(), AES192Wrap.String(), AES256Wrap.String():
block, err = aes.NewCipher(kw.KEK)
if err != nil {
return
}
}
return Unwrap(block, encKey)
}
// KeyLen returns the key lenght of the key wrap algorithm
func (kw *KeyWrap) KeyLen() (len int) {
switch kw.KeyWrapAlgorithm.String() {
case AES128Wrap.String():
len = 16
case AES192Wrap.String():
len = 24
case AES256Wrap.String():
len = 32
}
return
}
// AlgorithmIdentifier returns the OID of the key wrap algorithm
func (kw *KeyWrap) AlgorithmIdentifier() (algID pkix.AlgorithmIdentifier) {
switch kw.KeyWrapAlgorithm.String() {
case AES128Wrap.String(), AES192Wrap.String(), AES256Wrap.String():
algID = pkix.AlgorithmIdentifier{Algorithm: kw.KeyWrapAlgorithm}
}
return
}
// defaultIV from RFC-3394
var defaultIV = []byte{0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6}
// Wrap encrypts the content encryption key (cek) with the given AES cipher (block), using the AES Key Wrap algorithm (RFC-3394)
func Wrap(block cipher.Block, cek []byte) (encKey []byte, err error) {
if len(cek)%8 != 0 {
return nil, errors.New("Lenght of cek must be in 8-byte blocks")
}
// 1. Initialize variables
// Set A = IV, an initial value (see 2.2.3)
B := make([]byte, 16)
copy(B, defaultIV)
// For i = 1 to n
// R[i] = P[i]
encKey = make([]byte, len(cek)+8)
copy(encKey[8:], cek)
n := len(cek) / 8
// 2. Calculate intermediate values.
for j := 0; j <= 5; j++ {
for i := 1; i <= n; i++ {
// B = AES(K, A | R[i])
copy(B[8:], encKey[i*8:(i+1)*8])
block.Encrypt(B, B)
// A = MSB(64, B) ^ t where t = (n*j)+i
t := uint64(n*j + i)
b := binary.BigEndian.Uint64(B[:8]) ^ t
binary.BigEndian.PutUint64(B[:8], b)
// R[i] = LSB(64, B)
copy(encKey[i*8:(i+1)*8], B[8:])
}
}
// 3. Output the results.
copy(encKey[:8], B[:8])
return
}
// Unwrap decrypts the provided encrypted key (encKey) with the given AES cipher (block), using the AES Key Wrap algorithm (RFC-3394).
// Returns an error if validation fails.
func Unwrap(block cipher.Block, encKey []byte) (cek []byte, err error) {
if len(cek)%8 != 0 {
return nil, errors.New("Length of encKey must multiple 8-bytes")
}
//Initialize variables
B := make([]byte, 16)
copy(B, encKey[:8])
cek = make([]byte, len(encKey)-8)
copy(cek, encKey[8:])
n := (len(encKey) / 8) - 1
//Compute intermediate values
for j := 5; j >= 0; j-- {
for i := n; i >= 1; i-- {
// B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i
copy(B[8:], cek[(i-1)*8:i*8])
t := uint64(n*j + i)
b := binary.BigEndian.Uint64(B[:8]) ^ t
binary.BigEndian.PutUint64(B[:8], b)
block.Decrypt(B, B)
// A = MSB(64, B)
// R[i] = LSB(64, B)
copy(cek[(i-1)*8:i*8], B[8:])
}
}
if subtle.ConstantTimeCompare(B[:8], defaultIV) != 1 {
return nil, errors.New("Integrity check failed - unexpected IV")
}
//Output
return
}

View File

@ -30,6 +30,11 @@ var (
var ( var (
SignatureAlgorithmRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1} SignatureAlgorithmRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1}
SignatureAlgorithmECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1} SignatureAlgorithmECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1}
SignatureAlgorithmECDSAwithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1}
SignatureAlgorithmECDSAwithSHA224 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 1}
SignatureAlgorithmECDSAwithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2}
SignatureAlgorithmECDSAwithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3}
SignatureAlgorithmECDSAwithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4}
) )
// Public Key Encryption OIDs // Public Key Encryption OIDs
@ -51,6 +56,27 @@ var (
SubjectKeyIdentifier = asn1.ObjectIdentifier{2, 5, 29, 14} SubjectKeyIdentifier = asn1.ObjectIdentifier{2, 5, 29, 14}
) )
// Elliptic curve public key OID
var (
ECPublicKey = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1}
)
// DH Key Derivation Schemes OIDs
var (
DHSinglePassstdDHsha1kdfscheme = asn1.ObjectIdentifier{1, 3, 133, 16, 840, 63, 0, 2}
DHSinglePassstdDHsha224kdfscheme = asn1.ObjectIdentifier{1, 3, 132, 1, 11, 0}
DHSinglePassstdDHsha256kdfscheme = asn1.ObjectIdentifier{1, 3, 132, 1, 11, 1}
DHSinglePassstdDHsha384kdfscheme = asn1.ObjectIdentifier{1, 3, 132, 1, 11, 2}
DHSinglePassstdDHsha512kdfscheme = asn1.ObjectIdentifier{1, 3, 132, 1, 11, 3}
)
// Key wrap algorithm OIDs
var (
AES128Wrap = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 5}
AES192Wrap = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 25}
AES256Wrap = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 45}
)
// DigestAlgorithmToHash maps digest OIDs to crypto.Hash values. // DigestAlgorithmToHash maps digest OIDs to crypto.Hash values.
var DigestAlgorithmToHash = map[string]crypto.Hash{ var DigestAlgorithmToHash = map[string]crypto.Hash{
DigestAlgorithmSHA1.String(): crypto.SHA1, DigestAlgorithmSHA1.String(): crypto.SHA1,
@ -113,6 +139,18 @@ var SignatureAlgorithms = map[string]map[string]x509.SignatureAlgorithm{
DigestAlgorithmSHA384.String(): x509.ECDSAWithSHA384, DigestAlgorithmSHA384.String(): x509.ECDSAWithSHA384,
DigestAlgorithmSHA512.String(): x509.ECDSAWithSHA512, DigestAlgorithmSHA512.String(): x509.ECDSAWithSHA512,
}, },
SignatureAlgorithmECDSAwithSHA1.String(): map[string]x509.SignatureAlgorithm{
DigestAlgorithmSHA1.String(): x509.ECDSAWithSHA1,
},
SignatureAlgorithmECDSAwithSHA256.String(): map[string]x509.SignatureAlgorithm{
DigestAlgorithmSHA256.String(): x509.ECDSAWithSHA256,
},
SignatureAlgorithmECDSAwithSHA384.String(): map[string]x509.SignatureAlgorithm{
DigestAlgorithmSHA384.String(): x509.ECDSAWithSHA384,
},
SignatureAlgorithmECDSAwithSHA512.String(): map[string]x509.SignatureAlgorithm{
DigestAlgorithmSHA512.String(): x509.ECDSAWithSHA512,
},
} }
// PublicKeyAlgorithmToSignatureAlgorithm maps certificate public key // PublicKeyAlgorithmToSignatureAlgorithm maps certificate public key
@ -127,3 +165,12 @@ var PublicKeyAlgorithmToSignatureAlgorithm = map[x509.PublicKeyAlgorithm]pkix.Al
var PublicKeyAlgorithmToEncrytionAlgorithm = map[x509.PublicKeyAlgorithm]pkix.AlgorithmIdentifier{ var PublicKeyAlgorithmToEncrytionAlgorithm = map[x509.PublicKeyAlgorithm]pkix.AlgorithmIdentifier{
x509.RSA: pkix.AlgorithmIdentifier{Algorithm: EncryptionAlgorithmRSA}, x509.RSA: pkix.AlgorithmIdentifier{Algorithm: EncryptionAlgorithmRSA},
} }
// KDFHashAlgorithm key derivation schemes to its hash algorithms
var KDFHashAlgorithm = map[string]crypto.Hash{
DHSinglePassstdDHsha1kdfscheme.String(): crypto.SHA1,
DHSinglePassstdDHsha224kdfscheme.String(): crypto.SHA224,
DHSinglePassstdDHsha256kdfscheme.String(): crypto.SHA256,
DHSinglePassstdDHsha384kdfscheme.String(): crypto.SHA384,
DHSinglePassstdDHsha512kdfscheme.String(): crypto.SHA512,
}

View File

@ -32,9 +32,10 @@ var (
AEADChaCha20Poly1305 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 9, 16, 3, 18} AEADChaCha20Poly1305 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 9, 16, 3, 18}
) )
var symmetricKeyLen = map[string]int{ // SymmetricKeyLen maps the encryption algorithm to its key length
EncryptionAlgorithmDESCBC.String(): 7, var SymmetricKeyLen = map[string]int{
EncryptionAlgorithmDESEDE3CBC.String(): 21, EncryptionAlgorithmDESCBC.String(): 8,
EncryptionAlgorithmDESEDE3CBC.String(): 24,
EncryptionAlgorithmAES128CBC.String(): 16, EncryptionAlgorithmAES128CBC.String(): 16,
EncryptionAlgorithmAES256CBC.String(): 32, EncryptionAlgorithmAES256CBC.String(): 32,
//AEAD //AEAD
@ -46,7 +47,7 @@ var symmetricKeyLen = map[string]int{
func (e *EncryptionAlgorithm) Encrypt(plaintext []byte) (ciphertext []byte, err error) { func (e *EncryptionAlgorithm) Encrypt(plaintext []byte) (ciphertext []byte, err error) {
if e.Key == nil { if e.Key == nil {
e.Key = make([]byte, symmetricKeyLen[e.EncryptionAlgorithmIdentifier.String()]) e.Key = make([]byte, SymmetricKeyLen[e.EncryptionAlgorithmIdentifier.String()])
rand.Read(e.Key) rand.Read(e.Key)
} }
@ -71,7 +72,7 @@ func (e *EncryptionAlgorithm) Encrypt(plaintext []byte) (ciphertext []byte, err
switch e.EncryptionAlgorithmIdentifier.String() { switch e.EncryptionAlgorithmIdentifier.String() {
case EncryptionAlgorithmAES128CBC.String(), EncryptionAlgorithmAES256CBC.String(): case EncryptionAlgorithmAES128CBC.String(), EncryptionAlgorithmAES256CBC.String():
if e.IV == nil { if e.IV == nil {
e.IV = make([]byte, len(e.Key)) e.IV = make([]byte, blockCipher.BlockSize())
rand.Read(e.IV) rand.Read(e.IV)
} }
@ -180,7 +181,6 @@ func (e *EncryptionAlgorithm) Decrypt(ciphertext []byte) (plaintext []byte, err
switch e.EncryptionAlgorithmIdentifier.String() { switch e.EncryptionAlgorithmIdentifier.String() {
case EncryptionAlgorithmAES128CBC.String(), EncryptionAlgorithmAES256CBC.String(), EncryptionAlgorithmDESCBC.String(), EncryptionAlgorithmDESEDE3CBC.String(): case EncryptionAlgorithmAES128CBC.String(), EncryptionAlgorithmAES256CBC.String(), EncryptionAlgorithmDESCBC.String(), EncryptionAlgorithmDESEDE3CBC.String():
e.IV = e.ContentEncryptionAlgorithmIdentifier.Parameters.Bytes e.IV = e.ContentEncryptionAlgorithmIdentifier.Parameters.Bytes
blockMode = cipher.NewCBCDecrypter(blockCipher, e.IV) blockMode = cipher.NewCBCDecrypter(blockCipher, e.IV)
case EncryptionAlgorithmAES128GCM.String(): case EncryptionAlgorithmAES128GCM.String():
aead, err = cipher.NewGCM(blockCipher) aead, err = cipher.NewGCM(blockCipher)
@ -198,7 +198,6 @@ func (e *EncryptionAlgorithm) Decrypt(ciphertext []byte) (plaintext []byte, err
case EncryptionAlgorithmAES128CBC.String(), EncryptionAlgorithmAES256CBC.String(), EncryptionAlgorithmDESCBC.String(), EncryptionAlgorithmDESEDE3CBC.String(): case EncryptionAlgorithmAES128CBC.String(), EncryptionAlgorithmAES256CBC.String(), EncryptionAlgorithmDESCBC.String(), EncryptionAlgorithmDESEDE3CBC.String():
plaintext = make([]byte, len(ciphertext)) plaintext = make([]byte, len(ciphertext))
blockMode.CryptBlocks(plaintext, ciphertext) blockMode.CryptBlocks(plaintext, ciphertext)
return unpad(plaintext, blockMode.BlockSize()) return unpad(plaintext, blockMode.BlockSize())
case EncryptionAlgorithmAES128GCM.String(), AEADChaCha20Poly1305.String(): case EncryptionAlgorithmAES128GCM.String(), AEADChaCha20Poly1305.String():
var cipher []byte var cipher []byte
@ -247,6 +246,9 @@ func unpad(data []byte, blocklen int) ([]byte, error) {
// the last byte is the length of padding // the last byte is the length of padding
padlen := int(data[len(data)-1]) padlen := int(data[len(data)-1])
if padlen > blocklen {
return nil, fmt.Errorf("pad len %d is bigger than block len len %d", padlen, blocklen)
}
// check padding integrity, all bytes should be the same // check padding integrity, all bytes should be the same
pad := data[len(data)-padlen:] pad := data[len(data)-padlen:]

View File

@ -4,26 +4,29 @@ package openssl
import ( import (
"bytes" "bytes"
"crypto" "crypto"
"crypto/rsa"
"crypto/x509" "crypto/x509"
"encoding/pem" "encoding/pem"
"fmt" "fmt"
"io/ioutil" "io/ioutil"
"os" "os"
"os/exec" "os/exec"
"strings"
) )
// SMIME is the commpand used for openssl smime, can be replaces with cms
var SMIME = "smime"
//Encrypt a message with openssl //Encrypt a message with openssl
func Encrypt(in []byte, cert *x509.Certificate, opts ...string) (der []byte, err error) { func Encrypt(in []byte, cert *x509.Certificate, opts ...string) (der []byte, err error) {
tmp, err := ioutil.TempFile("", "example") tmpKey, err := ioutil.TempFile("", "example")
defer os.Remove(tmp.Name()) defer os.Remove(tmpKey.Name())
pem.Encode(tmp, &pem.Block{Type: "CERTIFICATE", Bytes: cert.Raw}) pem.Encode(tmpKey, &pem.Block{Type: "CERTIFICATE", Bytes: cert.Raw})
param := []string{"smime", "-encrypt", "-aes128"} param := []string{SMIME, "-encrypt", "-aes128"}
param = append(param, opts...) param = append(param, opts...)
param = append(param, tmp.Name()) param = append(param, tmpKey.Name())
der, err = openssl(in, param...) der, err = openssl(in, param...)
return return
@ -32,20 +35,24 @@ func Encrypt(in []byte, cert *x509.Certificate, opts ...string) (der []byte, err
//Decrypt a message with openssl //Decrypt a message with openssl
func Decrypt(in []byte, key crypto.PrivateKey, opts ...string) (plain []byte, err error) { func Decrypt(in []byte, key crypto.PrivateKey, opts ...string) (plain []byte, err error) {
tmp, err := ioutil.TempFile("", "example") tmpKey, err := ioutil.TempFile("", "example")
defer os.Remove(tmp.Name()) defer os.Remove(tmpKey.Name())
pem.Encode(tmp, &pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(key.(*rsa.PrivateKey))}) keyDER, err := x509.MarshalPKCS8PrivateKey(key)
if err != nil {
return
}
pem.Encode(tmpKey, &pem.Block{Type: "PRIVATE KEY", Bytes: keyDER})
param := []string{"smime", "-decrypt"} param := []string{SMIME, "-decrypt"}
param = append(param, opts...) param = append(param, opts...)
param = append(param, []string{"-decrypt", "-inkey", tmp.Name()}...) param = append(param, []string{"-inkey", tmpKey.Name()}...)
plain, err = openssl(in, param...) plain, err = openssl(in, param...)
return return
} }
//Create a detached signature with openssl // SignDetached creates a detached signature with openssl
func SignDetached(in []byte, cert *x509.Certificate, key crypto.PrivateKey, interm []*x509.Certificate, opts ...string) (plain []byte, err error) { func SignDetached(in []byte, cert *x509.Certificate, key crypto.PrivateKey, interm []*x509.Certificate, opts ...string) (plain []byte, err error) {
tmpCert, err := ioutil.TempFile("", "example") tmpCert, err := ioutil.TempFile("", "example")
@ -56,7 +63,11 @@ func SignDetached(in []byte, cert *x509.Certificate, key crypto.PrivateKey, inte
tmpKey, err := ioutil.TempFile("", "example") tmpKey, err := ioutil.TempFile("", "example")
defer os.Remove(tmpKey.Name()) defer os.Remove(tmpKey.Name())
pem.Encode(tmpKey, &pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(key.(*rsa.PrivateKey))}) keyDER, err := x509.MarshalPKCS8PrivateKey(key)
if err != nil {
return
}
pem.Encode(tmpKey, &pem.Block{Type: "PRIVATE KEY", Bytes: keyDER})
tmpInterm, err := ioutil.TempFile("", "example") tmpInterm, err := ioutil.TempFile("", "example")
defer os.Remove(tmpInterm.Name()) defer os.Remove(tmpInterm.Name())
@ -65,7 +76,7 @@ func SignDetached(in []byte, cert *x509.Certificate, key crypto.PrivateKey, inte
pem.Encode(tmpInterm, &pem.Block{Type: "CERTIFICATE", Bytes: i.Raw}) pem.Encode(tmpInterm, &pem.Block{Type: "CERTIFICATE", Bytes: i.Raw})
} }
param := []string{"smime", "-sign", "-nodetach"} param := []string{SMIME, "-sign", "-nodetach"}
param = append(param, opts...) param = append(param, opts...)
param = append(param, []string{"-signer", tmpCert.Name(), "-inkey", tmpKey.Name(), "-certfile", tmpInterm.Name()}...) param = append(param, []string{"-signer", tmpCert.Name(), "-inkey", tmpKey.Name(), "-certfile", tmpInterm.Name()}...)
plain, err = openssl(in, param...) plain, err = openssl(in, param...)
@ -73,7 +84,7 @@ func SignDetached(in []byte, cert *x509.Certificate, key crypto.PrivateKey, inte
return return
} }
//Create a signature with openssl // Sign creates a signature with openssl
func Sign(in []byte, cert *x509.Certificate, key crypto.PrivateKey, interm []*x509.Certificate, opts ...string) (plain []byte, err error) { func Sign(in []byte, cert *x509.Certificate, key crypto.PrivateKey, interm []*x509.Certificate, opts ...string) (plain []byte, err error) {
tmpCert, err := ioutil.TempFile("", "example") tmpCert, err := ioutil.TempFile("", "example")
@ -84,7 +95,11 @@ func Sign(in []byte, cert *x509.Certificate, key crypto.PrivateKey, interm []*x5
tmpKey, err := ioutil.TempFile("", "example") tmpKey, err := ioutil.TempFile("", "example")
defer os.Remove(tmpKey.Name()) defer os.Remove(tmpKey.Name())
pem.Encode(tmpKey, &pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(key.(*rsa.PrivateKey))}) keyDER, err := x509.MarshalPKCS8PrivateKey(key)
if err != nil {
return
}
pem.Encode(tmpKey, &pem.Block{Type: "PRIVATE KEY", Bytes: keyDER})
tmpInterm, err := ioutil.TempFile("", "example") tmpInterm, err := ioutil.TempFile("", "example")
defer os.Remove(tmpInterm.Name()) defer os.Remove(tmpInterm.Name())
@ -93,7 +108,7 @@ func Sign(in []byte, cert *x509.Certificate, key crypto.PrivateKey, interm []*x5
pem.Encode(tmpInterm, &pem.Block{Type: "CERTIFICATE", Bytes: i.Raw}) pem.Encode(tmpInterm, &pem.Block{Type: "CERTIFICATE", Bytes: i.Raw})
} }
param := []string{"smime", "-sign"} param := []string{SMIME, "-sign"}
param = append(param, opts...) param = append(param, opts...)
param = append(param, []string{"-signer", tmpCert.Name(), "-inkey", tmpKey.Name(), "-certfile", tmpInterm.Name()}...) param = append(param, []string{"-signer", tmpCert.Name(), "-inkey", tmpKey.Name(), "-certfile", tmpInterm.Name()}...)
plain, err = openssl(in, param...) plain, err = openssl(in, param...)
@ -109,7 +124,7 @@ func Verify(in []byte, ca *x509.Certificate, opts ...string) (plain []byte, err
pem.Encode(tmpCA, &pem.Block{Type: "CERTIFICATE", Bytes: ca.Raw}) pem.Encode(tmpCA, &pem.Block{Type: "CERTIFICATE", Bytes: ca.Raw})
param := []string{"smime", "-verify"} param := []string{SMIME, "-verify"}
param = append(param, opts...) param = append(param, opts...)
param = append(param, []string{"-CAfile", tmpCA.Name()}...) param = append(param, []string{"-CAfile", tmpCA.Name()}...)
plain, err = openssl(in, param...) plain, err = openssl(in, param...)
@ -117,6 +132,11 @@ func Verify(in []byte, ca *x509.Certificate, opts ...string) (plain []byte, err
return return
} }
// Openssl runs the openssl command with given args
func Openssl(stdin []byte, args ...string) ([]byte, error) {
return openssl(stdin, args...)
}
func openssl(stdin []byte, args ...string) ([]byte, error) { func openssl(stdin []byte, args ...string) ([]byte, error) {
cmd := exec.Command("openssl", args...) cmd := exec.Command("openssl", args...)
@ -133,5 +153,9 @@ func openssl(stdin []byte, args ...string) ([]byte, error) {
return nil, err return nil, err
} }
if strings.Contains(errs.String(), "Error") {
return nil, fmt.Errorf("error running %s (%s):\n ", cmd.Args, errs.String())
}
return out.Bytes(), nil return out.Bytes(), nil
} }

View File

@ -234,7 +234,7 @@ Y0ZB9qANMAsGA1UdDzEEAwIAEA==
-----END PRIVATE KEY-----` -----END PRIVATE KEY-----`
//https://github.com/fullsailor/pkcs7/issues/9 //https://github.com/fullsailor/pkcs7/issues/9
func TestiTunesReceipt(t *testing.T) { func TestSampleiTunesReceipt(t *testing.T) {
b, err := base64.StdEncoding.DecodeString(strings.TrimSpace(iTunesReceipt)) b, err := base64.StdEncoding.DecodeString(strings.TrimSpace(iTunesReceipt))
if err != nil { if err != nil {