1129 lines
32 KiB
Go
1129 lines
32 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package asn1 implements parsing of DER-encoded ASN.1 data structures,
|
|
// as defined in ITU-T Rec X.690.
|
|
//
|
|
// See also “A Layman's Guide to a Subset of ASN.1, BER, and DER,”
|
|
// http://luca.ntop.org/Teaching/Appunti/asn1.html.
|
|
package asn1
|
|
|
|
// ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
|
|
// are different encoding formats for those objects. Here, we'll be dealing
|
|
// with DER, the Distinguished Encoding Rules. DER is used in X.509 because
|
|
// it's fast to parse and, unlike BER, has a unique encoding for every object.
|
|
// When calculating hashes over objects, it's important that the resulting
|
|
// bytes be the same at both ends and DER removes this margin of error.
|
|
//
|
|
// ASN.1 is very complex and this package doesn't attempt to implement
|
|
// everything by any means.
|
|
|
|
import (
|
|
"encoding/asn1"
|
|
"errors"
|
|
"fmt"
|
|
"log"
|
|
"math"
|
|
"math/big"
|
|
"reflect"
|
|
"time"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
// A StructuralError suggests that the ASN.1 data is valid, but the Go type
|
|
// which is receiving it doesn't match.
|
|
//type StructuralError struct {
|
|
// Msg string
|
|
//}
|
|
|
|
//func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
|
|
|
|
// A SyntaxError suggests that the ASN.1 data is invalid.
|
|
//type SyntaxError struct {
|
|
// Msg string
|
|
//}
|
|
|
|
//func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
|
|
|
|
// We start by dealing with each of the primitive types in turn.
|
|
|
|
// BOOLEAN
|
|
|
|
func parseBool(bytes []byte) (ret bool, err error) {
|
|
if len(bytes) != 1 {
|
|
err = asn1.SyntaxError{Msg: "invalid boolean"}
|
|
return
|
|
}
|
|
|
|
// DER demands that "If the encoding represents the boolean value TRUE,
|
|
// its single contents octet shall have all eight bits set to one."
|
|
// Thus only 0 and 255 are valid encoded values.
|
|
switch bytes[0] {
|
|
case 0:
|
|
ret = false
|
|
case 0xff:
|
|
ret = true
|
|
default:
|
|
err = asn1.SyntaxError{Msg: "invalid boolean"}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// INTEGER
|
|
|
|
// checkInteger returns nil if the given bytes are a valid DER-encoded
|
|
// INTEGER and an error otherwise.
|
|
func checkInteger(bytes []byte) error {
|
|
if len(bytes) == 0 {
|
|
return asn1.StructuralError{Msg: "empty integer"}
|
|
}
|
|
if len(bytes) == 1 {
|
|
return nil
|
|
}
|
|
if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) {
|
|
return asn1.StructuralError{Msg: "integer not minimally-encoded"}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// parseInt64 treats the given bytes as a big-endian, signed integer and
|
|
// returns the result.
|
|
func parseInt64(bytes []byte) (ret int64, err error) {
|
|
err = checkInteger(bytes)
|
|
if err != nil {
|
|
return
|
|
}
|
|
if len(bytes) > 8 {
|
|
// We'll overflow an int64 in this case.
|
|
err = asn1.StructuralError{Msg: "integer too large"}
|
|
return
|
|
}
|
|
for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
|
|
ret <<= 8
|
|
ret |= int64(bytes[bytesRead])
|
|
}
|
|
|
|
// Shift up and down in order to sign extend the result.
|
|
ret <<= 64 - uint8(len(bytes))*8
|
|
ret >>= 64 - uint8(len(bytes))*8
|
|
return
|
|
}
|
|
|
|
// parseInt treats the given bytes as a big-endian, signed integer and returns
|
|
// the result.
|
|
func parseInt32(bytes []byte) (int32, error) {
|
|
if err := checkInteger(bytes); err != nil {
|
|
return 0, err
|
|
}
|
|
ret64, err := parseInt64(bytes)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
if ret64 != int64(int32(ret64)) {
|
|
return 0, asn1.StructuralError{Msg: "integer too large"}
|
|
}
|
|
return int32(ret64), nil
|
|
}
|
|
|
|
var bigOne = big.NewInt(1)
|
|
|
|
// parseBigInt treats the given bytes as a big-endian, signed integer and returns
|
|
// the result.
|
|
func parseBigInt(bytes []byte) (*big.Int, error) {
|
|
if err := checkInteger(bytes); err != nil {
|
|
return nil, err
|
|
}
|
|
ret := new(big.Int)
|
|
if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
|
|
// This is a negative number.
|
|
notBytes := make([]byte, len(bytes))
|
|
for i := range notBytes {
|
|
notBytes[i] = ^bytes[i]
|
|
}
|
|
ret.SetBytes(notBytes)
|
|
ret.Add(ret, bigOne)
|
|
ret.Neg(ret)
|
|
return ret, nil
|
|
}
|
|
ret.SetBytes(bytes)
|
|
return ret, nil
|
|
}
|
|
|
|
// BIT STRING
|
|
|
|
// BitString is the structure to use when you want an ASN.1 BIT STRING type. A
|
|
// bit string is padded up to the nearest byte in memory and the number of
|
|
// valid bits is recorded. Padding bits will be zero.
|
|
//type BitString struct {
|
|
// Bytes []byte // bits packed into bytes.
|
|
// BitLength int // length in bits.
|
|
//}
|
|
|
|
// At returns the bit at the given index. If the index is out of range it
|
|
// returns false.
|
|
//func (b BitString) At(i int) int {
|
|
// if i < 0 || i >= b.BitLength {
|
|
// return 0
|
|
// }
|
|
// x := i / 8
|
|
// y := 7 - uint(i%8)
|
|
// return int(b.Bytes[x]>>y) & 1
|
|
//}
|
|
|
|
// RightAlign returns a slice where the padding bits are at the beginning. The
|
|
// slice may share memory with the BitString.
|
|
//func (b BitString) RightAlign() []byte {
|
|
// shift := uint(8 - (b.BitLength % 8))
|
|
// if shift == 8 || len(b.Bytes) == 0 {
|
|
// return b.Bytes
|
|
// }
|
|
//
|
|
// a := make([]byte, len(b.Bytes))
|
|
// a[0] = b.Bytes[0] >> shift
|
|
// for i := 1; i < len(b.Bytes); i++ {
|
|
// a[i] = b.Bytes[i-1] << (8 - shift)
|
|
// a[i] |= b.Bytes[i] >> shift
|
|
// }
|
|
//
|
|
// return a
|
|
//}
|
|
|
|
// parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
|
|
func parseBitString(bytes []byte) (ret asn1.BitString, err error) {
|
|
if len(bytes) == 0 {
|
|
err = asn1.SyntaxError{Msg: "zero length BIT STRING"}
|
|
return
|
|
}
|
|
paddingBits := int(bytes[0])
|
|
if paddingBits > 7 ||
|
|
len(bytes) == 1 && paddingBits > 0 ||
|
|
bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
|
|
err = asn1.SyntaxError{Msg: "invalid padding bits in BIT STRING"}
|
|
return
|
|
}
|
|
ret.BitLength = (len(bytes)-1)*8 - paddingBits
|
|
ret.Bytes = bytes[1:]
|
|
return
|
|
}
|
|
|
|
// NULL
|
|
|
|
// NullRawValue is a RawValue with its Tag set to the ASN.1 NULL type tag (5).
|
|
//var NullRawValue = RawValue{Tag: TagNull}
|
|
|
|
// NullBytes contains bytes representing the DER-encoded ASN.1 NULL type.
|
|
//var NullBytes = []byte{TagNull, 0}
|
|
|
|
// OBJECT IDENTIFIER
|
|
|
|
// An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
|
|
//type ObjectIdentifier []int
|
|
|
|
// Equal reports whether oi and other represent the same identifier.
|
|
//func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
|
|
// if len(oi) != len(other) {
|
|
// return false
|
|
// }
|
|
// for i := 0; i < len(oi); i++ {
|
|
// if oi[i] != other[i] {
|
|
// return false
|
|
// }
|
|
// }
|
|
//
|
|
// return true
|
|
//}
|
|
|
|
//func (oi ObjectIdentifier) String() string {
|
|
// var s string
|
|
//
|
|
// for i, v := range oi {
|
|
// if i > 0 {
|
|
// s += "."
|
|
// }
|
|
// s += strconv.Itoa(v)
|
|
// }
|
|
//
|
|
// return s
|
|
//}
|
|
|
|
// parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
|
|
// returns it. An object identifier is a sequence of variable length integers
|
|
// that are assigned in a hierarchy.
|
|
func parseObjectIdentifier(bytes []byte) (s asn1.ObjectIdentifier, err error) {
|
|
if len(bytes) == 0 {
|
|
err = asn1.SyntaxError{Msg: "zero length OBJECT IDENTIFIER"}
|
|
return
|
|
}
|
|
|
|
// In the worst case, we get two elements from the first byte (which is
|
|
// encoded differently) and then every varint is a single byte long.
|
|
s = make([]int, len(bytes)+1)
|
|
|
|
// The first varint is 40*value1 + value2:
|
|
// According to this packing, value1 can take the values 0, 1 and 2 only.
|
|
// When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
|
|
// then there are no restrictions on value2.
|
|
v, offset, err := parseBase128Int(bytes, 0)
|
|
if err != nil {
|
|
return
|
|
}
|
|
if v < 80 {
|
|
s[0] = v / 40
|
|
s[1] = v % 40
|
|
} else {
|
|
s[0] = 2
|
|
s[1] = v - 80
|
|
}
|
|
|
|
i := 2
|
|
for ; offset < len(bytes); i++ {
|
|
v, offset, err = parseBase128Int(bytes, offset)
|
|
if err != nil {
|
|
return
|
|
}
|
|
s[i] = v
|
|
}
|
|
s = s[0:i]
|
|
return
|
|
}
|
|
|
|
// ENUMERATED
|
|
|
|
// An Enumerated is represented as a plain int.
|
|
//type Enumerated int
|
|
|
|
// FLAG
|
|
|
|
// A Flag accepts any data and is set to true if present.
|
|
//type Flag bool
|
|
|
|
// parseBase128Int parses a base-128 encoded int from the given offset in the
|
|
// given byte slice. It returns the value and the new offset.
|
|
func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
|
|
offset = initOffset
|
|
var ret64 int64
|
|
for shifted := 0; offset < len(bytes); shifted++ {
|
|
// 5 * 7 bits per byte == 35 bits of data
|
|
// Thus the representation is either non-minimal or too large for an int32
|
|
if shifted == 5 {
|
|
err = asn1.StructuralError{Msg: "base 128 integer too large"}
|
|
return
|
|
}
|
|
ret64 <<= 7
|
|
b := bytes[offset]
|
|
ret64 |= int64(b & 0x7f)
|
|
offset++
|
|
if b&0x80 == 0 {
|
|
ret = int(ret64)
|
|
// Ensure that the returned value fits in an int on all platforms
|
|
if ret64 > math.MaxInt32 {
|
|
err = asn1.StructuralError{Msg: "base 128 integer too large"}
|
|
}
|
|
return
|
|
}
|
|
}
|
|
err = asn1.SyntaxError{Msg: "truncated base 128 integer"}
|
|
return
|
|
}
|
|
|
|
// UTCTime
|
|
|
|
func parseUTCTime(bytes []byte) (ret time.Time, err error) {
|
|
s := string(bytes)
|
|
|
|
formatStr := "0601021504Z0700"
|
|
ret, err = time.Parse(formatStr, s)
|
|
if err != nil {
|
|
formatStr = "060102150405Z0700"
|
|
ret, err = time.Parse(formatStr, s)
|
|
}
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
if serialized := ret.Format(formatStr); serialized != s {
|
|
err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
|
|
return
|
|
}
|
|
|
|
if ret.Year() >= 2050 {
|
|
// UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
|
|
ret = ret.AddDate(-100, 0, 0)
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// parseGeneralizedTime parses the GeneralizedTime from the given byte slice
|
|
// and returns the resulting time.
|
|
func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
|
|
const formatStr = "20060102150405Z0700"
|
|
s := string(bytes)
|
|
|
|
if ret, err = time.Parse(formatStr, s); err != nil {
|
|
return
|
|
}
|
|
|
|
if serialized := ret.Format(formatStr); serialized != s {
|
|
err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// NumericString
|
|
|
|
// parseNumericString parses an ASN.1 NumericString from the given byte array
|
|
// and returns it.
|
|
func parseNumericString(bytes []byte) (ret string, err error) {
|
|
for _, b := range bytes {
|
|
if !isNumeric(b) {
|
|
return "", asn1.SyntaxError{Msg: "NumericString contains invalid character"}
|
|
}
|
|
}
|
|
return string(bytes), nil
|
|
}
|
|
|
|
// isNumeric reports whether the given b is in the ASN.1 NumericString set.
|
|
func isNumeric(b byte) bool {
|
|
return '0' <= b && b <= '9' ||
|
|
b == ' '
|
|
}
|
|
|
|
// PrintableString
|
|
|
|
// parsePrintableString parses an ASN.1 PrintableString from the given byte
|
|
// array and returns it.
|
|
func parsePrintableString(bytes []byte) (ret string, err error) {
|
|
for _, b := range bytes {
|
|
if !isPrintable(b, allowAsterisk, allowAmpersand) {
|
|
err = asn1.SyntaxError{Msg: "PrintableString contains invalid character"}
|
|
return
|
|
}
|
|
}
|
|
ret = string(bytes)
|
|
return
|
|
}
|
|
|
|
type asteriskFlag bool
|
|
type ampersandFlag bool
|
|
|
|
const (
|
|
allowAsterisk asteriskFlag = true
|
|
rejectAsterisk asteriskFlag = false
|
|
|
|
allowAmpersand ampersandFlag = true
|
|
rejectAmpersand ampersandFlag = false
|
|
)
|
|
|
|
// isPrintable reports whether the given b is in the ASN.1 PrintableString set.
|
|
// If asterisk is allowAsterisk then '*' is also allowed, reflecting existing
|
|
// practice. If ampersand is allowAmpersand then '&' is allowed as well.
|
|
func isPrintable(b byte, asterisk asteriskFlag, ampersand ampersandFlag) bool {
|
|
return 'a' <= b && b <= 'z' ||
|
|
'A' <= b && b <= 'Z' ||
|
|
'0' <= b && b <= '9' ||
|
|
'\'' <= b && b <= ')' ||
|
|
'+' <= b && b <= '/' ||
|
|
b == ' ' ||
|
|
b == ':' ||
|
|
b == '=' ||
|
|
b == '?' ||
|
|
// This is technically not allowed in a PrintableString.
|
|
// However, x509 certificates with wildcard strings don't
|
|
// always use the correct string type so we permit it.
|
|
(bool(asterisk) && b == '*') ||
|
|
// This is not technically allowed either. However, not
|
|
// only is it relatively common, but there are also a
|
|
// handful of CA certificates that contain it. At least
|
|
// one of which will not expire until 2027.
|
|
(bool(ampersand) && b == '&')
|
|
}
|
|
|
|
// IA5String
|
|
|
|
// parseIA5String parses an ASN.1 IA5String (ASCII string) from the given
|
|
// byte slice and returns it.
|
|
func parseIA5String(bytes []byte) (ret string, err error) {
|
|
for _, b := range bytes {
|
|
if b >= utf8.RuneSelf {
|
|
err = asn1.SyntaxError{Msg: "IA5String contains invalid character"}
|
|
return
|
|
}
|
|
}
|
|
ret = string(bytes)
|
|
return
|
|
}
|
|
|
|
// T61String
|
|
|
|
// parseT61String parses an ASN.1 T61String (8-bit clean string) from the given
|
|
// byte slice and returns it.
|
|
func parseT61String(bytes []byte) (ret string, err error) {
|
|
return string(bytes), nil
|
|
}
|
|
|
|
// UTF8String
|
|
|
|
// parseUTF8String parses an ASN.1 UTF8String (raw UTF-8) from the given byte
|
|
// array and returns it.
|
|
func parseUTF8String(bytes []byte) (ret string, err error) {
|
|
if !utf8.Valid(bytes) {
|
|
return "", errors.New("asn1: invalid UTF-8 string")
|
|
}
|
|
return string(bytes), nil
|
|
}
|
|
|
|
// A RawValue represents an undecoded ASN.1 object.
|
|
//type RawValue struct {
|
|
// Class, Tag int
|
|
// IsCompound bool
|
|
// Bytes []byte
|
|
// FullBytes []byte // includes the tag and length
|
|
//}
|
|
|
|
// RawContent is used to signal that the undecoded, DER data needs to be
|
|
// preserved for a struct. To use it, the first field of the struct must have
|
|
// this type. It's an error for any of the other fields to have this type.
|
|
//type RawContent []byte
|
|
|
|
// Tagging
|
|
|
|
// parseTagAndLength parses an ASN.1 tag and length pair from the given offset
|
|
// into a byte slice. It returns the parsed data and the new offset. SET and
|
|
// SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
|
|
// don't distinguish between ordered and unordered objects in this code.
|
|
func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
|
|
offset = initOffset
|
|
// parseTagAndLength should not be called without at least a single
|
|
// byte to read. Thus this check is for robustness:
|
|
if offset >= len(bytes) {
|
|
err = errors.New("asn1: internal error in parseTagAndLength")
|
|
return
|
|
}
|
|
b := bytes[offset]
|
|
offset++
|
|
ret.class = int(b >> 6)
|
|
ret.isCompound = b&0x20 == 0x20
|
|
ret.tag = int(b & 0x1f)
|
|
|
|
// If the bottom five bits are set, then the tag number is actually base 128
|
|
// encoded afterwards
|
|
if ret.tag == 0x1f {
|
|
ret.tag, offset, err = parseBase128Int(bytes, offset)
|
|
if err != nil {
|
|
return
|
|
}
|
|
// Tags should be encoded in minimal form.
|
|
if ret.tag < 0x1f {
|
|
err = asn1.SyntaxError{Msg: "non-minimal tag"}
|
|
return
|
|
}
|
|
}
|
|
if offset >= len(bytes) {
|
|
err = asn1.SyntaxError{Msg: "truncated tag or length"}
|
|
return
|
|
}
|
|
b = bytes[offset]
|
|
offset++
|
|
if b&0x80 == 0 {
|
|
// The length is encoded in the bottom 7 bits.
|
|
ret.length = int(b & 0x7f)
|
|
} else {
|
|
// Bottom 7 bits give the number of length bytes to follow.
|
|
numBytes := int(b & 0x7f)
|
|
if numBytes == 0 {
|
|
if ret.isCompound && ret.tag != TagOctetString {
|
|
reTag, reoffset, _ := parseTagAndLength(bytes, offset)
|
|
for reoffset <= len(bytes) {
|
|
if bytes[reoffset-2] == 0x00 && bytes[reoffset-1] == 0x00 {
|
|
//delete indefinite termination
|
|
bytes = append(bytes[:reoffset-2], bytes[reoffset:]...)
|
|
|
|
ret.length = reoffset - 2 - offset
|
|
|
|
var encLen []byte
|
|
if ret.length >= 128 {
|
|
l := lengthLength(ret.length)
|
|
encLen = append(encLen, 0x80|byte(l))
|
|
encLen = appendLength(encLen, ret.length)
|
|
} else {
|
|
encLen = append(encLen, byte(ret.length))
|
|
}
|
|
|
|
if ret.length > 0 {
|
|
bytes = append(bytes[:offset-1], append(encLen, bytes[offset:]...)...)
|
|
offset = offset + len(encLen) - 1
|
|
}
|
|
return
|
|
}
|
|
if len(bytes) <= reoffset+reTag.length {
|
|
err = asn1.StructuralError{Msg: "indefinete lenght: length too large"}
|
|
return
|
|
}
|
|
reTag, reoffset, _ = parseTagAndLength(bytes, reoffset+reTag.length)
|
|
}
|
|
log.Println("indefinite length found (not DER)")
|
|
}
|
|
if ret.isCompound && ret.tag == TagOctetString {
|
|
reTag, reoffset, _ := parseTagAndLength(bytes, offset)
|
|
for reoffset <= len(bytes) {
|
|
if bytes[reoffset-2] == 0x00 && bytes[reoffset-1] == 0x00 {
|
|
//delete indefinite termination
|
|
|
|
ret.length = reoffset - offset
|
|
|
|
return
|
|
}
|
|
if len(bytes) <= reoffset+reTag.length {
|
|
err = asn1.StructuralError{Msg: "indefinete lenght: length too large"}
|
|
return
|
|
}
|
|
reTag, reoffset, _ = parseTagAndLength(bytes, reoffset+reTag.length)
|
|
}
|
|
log.Println("indefinite length found (not DER)")
|
|
}
|
|
err = asn1.SyntaxError{Msg: "indefinite length found (not DER)"}
|
|
return
|
|
}
|
|
ret.length = 0
|
|
for i := 0; i < numBytes; i++ {
|
|
if offset >= len(bytes) {
|
|
err = asn1.SyntaxError{Msg: "truncated tag or length"}
|
|
return
|
|
}
|
|
b = bytes[offset]
|
|
offset++
|
|
if ret.length >= 1<<23 {
|
|
// We can't shift ret.length up without
|
|
// overflowing.
|
|
err = asn1.StructuralError{Msg: "length too large"}
|
|
return
|
|
}
|
|
ret.length <<= 8
|
|
ret.length |= int(b)
|
|
if ret.length == 0 {
|
|
// DER requires that lengths be minimal.
|
|
err = asn1.StructuralError{Msg: "superfluous leading zeros in length"}
|
|
return
|
|
}
|
|
}
|
|
// Short lengths must be encoded in short form.
|
|
if ret.length < 0x80 {
|
|
err = asn1.StructuralError{Msg: "non-minimal length"}
|
|
return
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
|
|
// a number of ASN.1 values from the given byte slice and returns them as a
|
|
// slice of Go values of the given type.
|
|
func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type, params fieldParameters) (ret reflect.Value, err error) {
|
|
matchAny, expectedTag, compoundType, ok := getUniversalType(elemType)
|
|
if !ok {
|
|
err = asn1.StructuralError{Msg: "unknown Go type for slice"}
|
|
return
|
|
}
|
|
|
|
// First we iterate over the input and count the number of elements,
|
|
// checking that the types are correct in each case.
|
|
numElements := 0
|
|
for offset := 0; offset < len(bytes); {
|
|
var t tagAndLength
|
|
t, offset, err = parseTagAndLength(bytes, offset)
|
|
if err != nil {
|
|
return
|
|
}
|
|
switch t.tag {
|
|
case TagIA5String, TagGeneralString, TagT61String, TagUTF8String, TagNumericString:
|
|
// We pretend that various other string types are
|
|
// PRINTABLE STRINGs so that a sequence of them can be
|
|
// parsed into a []string.
|
|
t.tag = TagPrintableString
|
|
case TagGeneralizedTime, TagUTCTime:
|
|
// Likewise, both time types are treated the same.
|
|
t.tag = TagUTCTime
|
|
}
|
|
|
|
if !matchAny && (t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag) && !params.choice {
|
|
err = asn1.StructuralError{Msg: "sequence tag mismatch"}
|
|
return
|
|
}
|
|
if invalidLength(offset, t.length, len(bytes)) {
|
|
err = asn1.SyntaxError{Msg: "truncated sequence"}
|
|
return
|
|
}
|
|
offset += t.length
|
|
numElements++
|
|
}
|
|
ret = reflect.MakeSlice(sliceType, numElements, numElements)
|
|
fp := fieldParameters{choice: params.choice}
|
|
offset := 0
|
|
for i := 0; i < numElements; i++ {
|
|
offset, err = parseField(ret.Index(i), bytes, offset, fp)
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
var (
|
|
bitStringType = reflect.TypeOf(asn1.BitString{})
|
|
objectIdentifierType = reflect.TypeOf(asn1.ObjectIdentifier{})
|
|
enumeratedType = reflect.TypeOf(asn1.Enumerated(0))
|
|
flagType = reflect.TypeOf(asn1.Flag(false))
|
|
timeType = reflect.TypeOf(time.Time{})
|
|
rawValueType = reflect.TypeOf(asn1.RawValue{})
|
|
rawContentsType = reflect.TypeOf(asn1.RawContent(nil))
|
|
bigIntType = reflect.TypeOf(new(big.Int))
|
|
)
|
|
|
|
// invalidLength reports whether offset + length > sliceLength, or if the
|
|
// addition would overflow.
|
|
func invalidLength(offset, length, sliceLength int) bool {
|
|
return offset+length < offset || offset+length > sliceLength
|
|
}
|
|
|
|
// parseField is the main parsing function. Given a byte slice and an offset
|
|
// into the array, it will try to parse a suitable ASN.1 value out and store it
|
|
// in the given Value.
|
|
func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
|
|
offset = initOffset
|
|
fieldType := v.Type()
|
|
|
|
// If we have run out of data, it may be that there are optional elements at the end.
|
|
if offset == len(bytes) {
|
|
if !setDefaultValue(v, params) {
|
|
err = asn1.SyntaxError{Msg: "sequence truncated"}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Deal with the ANY type.
|
|
if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
|
|
var t tagAndLength
|
|
t, offset, err = parseTagAndLength(bytes, offset)
|
|
if err != nil {
|
|
return
|
|
}
|
|
if invalidLength(offset, t.length, len(bytes)) {
|
|
err = asn1.SyntaxError{Msg: "data truncated"}
|
|
return
|
|
}
|
|
var result interface{}
|
|
if !t.isCompound && t.class == ClassUniversal {
|
|
innerBytes := bytes[offset : offset+t.length]
|
|
switch t.tag {
|
|
case TagPrintableString:
|
|
result, err = parsePrintableString(innerBytes)
|
|
case TagNumericString:
|
|
result, err = parseNumericString(innerBytes)
|
|
case TagIA5String:
|
|
result, err = parseIA5String(innerBytes)
|
|
case TagT61String:
|
|
result, err = parseT61String(innerBytes)
|
|
case TagUTF8String:
|
|
result, err = parseUTF8String(innerBytes)
|
|
case TagInteger:
|
|
result, err = parseInt64(innerBytes)
|
|
case TagBitString:
|
|
result, err = parseBitString(innerBytes)
|
|
case TagOID:
|
|
result, err = parseObjectIdentifier(innerBytes)
|
|
case TagUTCTime:
|
|
result, err = parseUTCTime(innerBytes)
|
|
case TagGeneralizedTime:
|
|
result, err = parseGeneralizedTime(innerBytes)
|
|
case TagOctetString:
|
|
result = innerBytes
|
|
default:
|
|
// If we don't know how to handle the type, we just leave Value as nil.
|
|
}
|
|
}
|
|
offset += t.length
|
|
if err != nil {
|
|
return
|
|
}
|
|
if result != nil {
|
|
v.Set(reflect.ValueOf(result))
|
|
}
|
|
return
|
|
}
|
|
|
|
t, offset, err := parseTagAndLength(bytes, offset)
|
|
if err != nil {
|
|
return
|
|
}
|
|
if params.explicit && !params.choice {
|
|
expectedClass := ClassContextSpecific
|
|
if params.application {
|
|
expectedClass = ClassApplication
|
|
}
|
|
if offset == len(bytes) {
|
|
err = asn1.StructuralError{Msg: "explicit tag has no child"}
|
|
return
|
|
}
|
|
if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
|
|
if fieldType == rawValueType {
|
|
// The inner element should not be parsed for RawValues.
|
|
} else if t.length > 0 {
|
|
t, offset, err = parseTagAndLength(bytes, offset)
|
|
if t.isCompound && t.tag == TagOctetString {
|
|
t, offset, err = parseTagAndLength(bytes, offset)
|
|
if t.tag == TagOctetString {
|
|
v.Set(reflect.ValueOf(bytes[offset : offset+t.length]))
|
|
}
|
|
}
|
|
if err != nil {
|
|
return
|
|
}
|
|
} else {
|
|
if fieldType != flagType {
|
|
err = asn1.StructuralError{Msg: "zero length explicit tag was not an asn1.Flag"}
|
|
return
|
|
}
|
|
v.SetBool(true)
|
|
return
|
|
}
|
|
} else {
|
|
// The tags didn't match, it might be an optional element.
|
|
ok := setDefaultValue(v, params)
|
|
if ok {
|
|
offset = initOffset
|
|
} else {
|
|
err = asn1.StructuralError{Msg: "explicitly tagged member didn't match"}
|
|
}
|
|
return
|
|
}
|
|
}
|
|
|
|
matchAny, universalTag, compoundType, ok1 := getUniversalType(fieldType)
|
|
if !ok1 {
|
|
err = asn1.StructuralError{Msg: fmt.Sprintf("unknown Go type: %v", fieldType)}
|
|
return
|
|
}
|
|
|
|
// Special case for strings: all the ASN.1 string types map to the Go
|
|
// type string. getUniversalType returns the tag for PrintableString
|
|
// when it sees a string, so if we see a different string type on the
|
|
// wire, we change the universal type to match.
|
|
if universalTag == TagPrintableString {
|
|
if t.class == ClassUniversal {
|
|
switch t.tag {
|
|
case TagIA5String, TagGeneralString, TagT61String, TagUTF8String, TagNumericString:
|
|
universalTag = t.tag
|
|
}
|
|
} else if params.stringType != 0 {
|
|
universalTag = params.stringType
|
|
}
|
|
}
|
|
|
|
// Special case for time: UTCTime and GeneralizedTime both map to the
|
|
// Go type time.Time.
|
|
if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal {
|
|
universalTag = TagGeneralizedTime
|
|
}
|
|
|
|
if params.set {
|
|
universalTag = TagSet
|
|
}
|
|
|
|
matchAnyClassAndTag := matchAny
|
|
expectedClass := ClassUniversal
|
|
expectedTag := universalTag
|
|
|
|
if !params.explicit && params.tag != nil {
|
|
expectedClass = ClassContextSpecific
|
|
expectedTag = *params.tag
|
|
matchAnyClassAndTag = false
|
|
}
|
|
|
|
if !params.explicit && params.application && params.tag != nil {
|
|
expectedClass = ClassApplication
|
|
expectedTag = *params.tag
|
|
matchAnyClassAndTag = false
|
|
}
|
|
|
|
if !params.explicit && params.private && params.tag != nil {
|
|
expectedClass = ClassPrivate
|
|
expectedTag = *params.tag
|
|
matchAnyClassAndTag = false
|
|
}
|
|
|
|
// We have unwrapped any explicit tagging at this point.
|
|
if (!matchAnyClassAndTag && (t.class != expectedClass || t.tag != expectedTag) ||
|
|
(!matchAny && t.isCompound != compoundType)) && !params.choice {
|
|
// Tags don't match. Again, it could be an optional element.
|
|
ok := setDefaultValue(v, params)
|
|
if ok {
|
|
offset = initOffset
|
|
} else {
|
|
err = asn1.StructuralError{Msg: fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
|
|
}
|
|
return
|
|
}
|
|
if invalidLength(offset, t.length, len(bytes)) {
|
|
err = asn1.SyntaxError{Msg: "data truncated"}
|
|
return
|
|
}
|
|
innerBytes := bytes[offset : offset+t.length]
|
|
offset += t.length
|
|
|
|
// We deal with the structures defined in this package first.
|
|
switch fieldType {
|
|
case rawValueType:
|
|
result := asn1.RawValue{Class: t.class, Tag: t.tag, IsCompound: t.isCompound, Bytes: innerBytes, FullBytes: bytes[initOffset:offset]}
|
|
v.Set(reflect.ValueOf(result))
|
|
return
|
|
case objectIdentifierType:
|
|
newSlice, err1 := parseObjectIdentifier(innerBytes)
|
|
v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
|
|
if err1 == nil {
|
|
reflect.Copy(v, reflect.ValueOf(newSlice))
|
|
}
|
|
err = err1
|
|
return
|
|
case bitStringType:
|
|
bs, err1 := parseBitString(innerBytes)
|
|
if err1 == nil {
|
|
v.Set(reflect.ValueOf(bs))
|
|
}
|
|
err = err1
|
|
return
|
|
case timeType:
|
|
var time time.Time
|
|
var err1 error
|
|
if universalTag == TagUTCTime {
|
|
time, err1 = parseUTCTime(innerBytes)
|
|
} else {
|
|
time, err1 = parseGeneralizedTime(innerBytes)
|
|
}
|
|
if err1 == nil {
|
|
v.Set(reflect.ValueOf(time))
|
|
}
|
|
err = err1
|
|
return
|
|
case enumeratedType:
|
|
parsedInt, err1 := parseInt32(innerBytes)
|
|
if err1 == nil {
|
|
v.SetInt(int64(parsedInt))
|
|
}
|
|
err = err1
|
|
return
|
|
case flagType:
|
|
v.SetBool(true)
|
|
return
|
|
case bigIntType:
|
|
parsedInt, err1 := parseBigInt(innerBytes)
|
|
if err1 == nil {
|
|
v.Set(reflect.ValueOf(parsedInt))
|
|
}
|
|
err = err1
|
|
return
|
|
}
|
|
switch val := v; val.Kind() {
|
|
case reflect.Bool:
|
|
parsedBool, err1 := parseBool(innerBytes)
|
|
if err1 == nil {
|
|
val.SetBool(parsedBool)
|
|
}
|
|
err = err1
|
|
return
|
|
case reflect.Int, reflect.Int32, reflect.Int64:
|
|
if val.Type().Size() == 4 {
|
|
parsedInt, err1 := parseInt32(innerBytes)
|
|
if err1 == nil {
|
|
val.SetInt(int64(parsedInt))
|
|
}
|
|
err = err1
|
|
} else {
|
|
parsedInt, err1 := parseInt64(innerBytes)
|
|
if err1 == nil {
|
|
val.SetInt(parsedInt)
|
|
}
|
|
err = err1
|
|
}
|
|
return
|
|
// TODO(dfc) Add support for the remaining integer types
|
|
case reflect.Struct:
|
|
structType := fieldType
|
|
|
|
for i := 0; i < structType.NumField(); i++ {
|
|
if structType.Field(i).PkgPath != "" {
|
|
err = asn1.StructuralError{Msg: "struct contains unexported fields"}
|
|
return
|
|
}
|
|
}
|
|
|
|
if structType.NumField() > 0 &&
|
|
structType.Field(0).Type == rawContentsType {
|
|
bytes := bytes[initOffset:offset]
|
|
val.Field(0).Set(reflect.ValueOf(asn1.RawContent(bytes)))
|
|
}
|
|
|
|
innerOffset := 0
|
|
if params.choice {
|
|
if !params.explicit {
|
|
innerBytes = bytes[initOffset:]
|
|
}
|
|
}
|
|
for i := 0; i < structType.NumField(); i++ {
|
|
field := structType.Field(i)
|
|
if i == 0 && field.Type == rawContentsType {
|
|
continue
|
|
}
|
|
innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
// We allow extra bytes at the end of the SEQUENCE because
|
|
// adding elements to the end has been used in X.509 as the
|
|
// version numbers have increased.
|
|
return
|
|
case reflect.Slice:
|
|
sliceType := fieldType
|
|
if sliceType.Elem().Kind() == reflect.Uint8 {
|
|
val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
|
|
reflect.Copy(val, reflect.ValueOf(innerBytes))
|
|
return
|
|
}
|
|
newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem(), params)
|
|
if err1 == nil {
|
|
val.Set(newSlice)
|
|
}
|
|
err = err1
|
|
return
|
|
case reflect.String:
|
|
var v string
|
|
switch universalTag {
|
|
case TagPrintableString:
|
|
v, err = parsePrintableString(innerBytes)
|
|
case TagNumericString:
|
|
v, err = parseNumericString(innerBytes)
|
|
case TagIA5String:
|
|
v, err = parseIA5String(innerBytes)
|
|
case TagT61String:
|
|
v, err = parseT61String(innerBytes)
|
|
case TagUTF8String:
|
|
v, err = parseUTF8String(innerBytes)
|
|
case TagGeneralString:
|
|
// GeneralString is specified in ISO-2022/ECMA-35,
|
|
// A brief review suggests that it includes structures
|
|
// that allow the encoding to change midstring and
|
|
// such. We give up and pass it as an 8-bit string.
|
|
v, err = parseT61String(innerBytes)
|
|
default:
|
|
err = asn1.SyntaxError{Msg: fmt.Sprintf("internal error: unknown string type %d", universalTag)}
|
|
}
|
|
if err == nil {
|
|
val.SetString(v)
|
|
}
|
|
return
|
|
}
|
|
err = asn1.StructuralError{Msg: "unsupported: " + v.Type().String()}
|
|
return
|
|
}
|
|
|
|
// canHaveDefaultValue reports whether k is a Kind that we will set a default
|
|
// value for. (A signed integer, essentially.)
|
|
func canHaveDefaultValue(k reflect.Kind) bool {
|
|
switch k {
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// setDefaultValue is used to install a default value, from a tag string, into
|
|
// a Value. It is successful if the field was optional, even if a default value
|
|
// wasn't provided or it failed to install it into the Value.
|
|
func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
|
|
if !params.optional {
|
|
return
|
|
}
|
|
ok = true
|
|
if params.defaultValue == nil {
|
|
return
|
|
}
|
|
if canHaveDefaultValue(v.Kind()) {
|
|
v.SetInt(*params.defaultValue)
|
|
}
|
|
return
|
|
}
|
|
|
|
// Unmarshal parses the DER-encoded ASN.1 data structure b
|
|
// and uses the reflect package to fill in an arbitrary value pointed at by val.
|
|
// Because Unmarshal uses the reflect package, the structs
|
|
// being written to must use upper case field names.
|
|
//
|
|
// An ASN.1 INTEGER can be written to an int, int32, int64,
|
|
// or *big.Int (from the math/big package).
|
|
// If the encoded value does not fit in the Go type,
|
|
// Unmarshal returns a parse error.
|
|
//
|
|
// An ASN.1 BIT STRING can be written to a BitString.
|
|
//
|
|
// An ASN.1 OCTET STRING can be written to a []byte.
|
|
//
|
|
// An ASN.1 OBJECT IDENTIFIER can be written to an
|
|
// ObjectIdentifier.
|
|
//
|
|
// An ASN.1 ENUMERATED can be written to an Enumerated.
|
|
//
|
|
// An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
|
|
//
|
|
// An ASN.1 PrintableString, IA5String, or NumericString can be written to a string.
|
|
//
|
|
// Any of the above ASN.1 values can be written to an interface{}.
|
|
// The value stored in the interface has the corresponding Go type.
|
|
// For integers, that type is int64.
|
|
//
|
|
// An ASN.1 SEQUENCE OF x or SET OF x can be written
|
|
// to a slice if an x can be written to the slice's element type.
|
|
//
|
|
// An ASN.1 SEQUENCE or SET can be written to a struct
|
|
// if each of the elements in the sequence can be
|
|
// written to the corresponding element in the struct.
|
|
//
|
|
// The following tags on struct fields have special meaning to Unmarshal:
|
|
//
|
|
// application specifies that an APPLICATION tag is used
|
|
// private specifies that a PRIVATE tag is used
|
|
// default:x sets the default value for optional integer fields (only used if optional is also present)
|
|
// explicit specifies that an additional, explicit tag wraps the implicit one
|
|
// optional marks the field as ASN.1 OPTIONAL
|
|
// set causes a SET, rather than a SEQUENCE type to be expected
|
|
// tag:x specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
|
|
//
|
|
// If the type of the first field of a structure is RawContent then the raw
|
|
// ASN1 contents of the struct will be stored in it.
|
|
//
|
|
// If the type name of a slice element ends with "SET" then it's treated as if
|
|
// the "set" tag was set on it. This can be used with nested slices where a
|
|
// struct tag cannot be given.
|
|
//
|
|
// Other ASN.1 types are not supported; if it encounters them,
|
|
// Unmarshal returns a parse error.
|
|
func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
|
|
return UnmarshalWithParams(b, val, "")
|
|
}
|
|
|
|
// UnmarshalWithParams allows field parameters to be specified for the
|
|
// top-level element. The form of the params is the same as the field tags.
|
|
func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
|
|
v := reflect.ValueOf(val).Elem()
|
|
offset, err := parseField(v, b, 0, parseFieldParameters(params))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return b[offset:], nil
|
|
}
|